Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Rev Immunol ; 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2313451

ABSTRACT

Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.

2.
Cell ; 185(21): 3857-3876, 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2060512

ABSTRACT

The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.


Subject(s)
COVID-19 , Janus Kinases , Animals , Cytokines/metabolism , Humans , Interferons/metabolism , Janus Kinases/metabolism , Mammals/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
3.
Nat Rev Rheumatol ; 18(3): 133-145, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608176

ABSTRACT

The four Janus kinase (JAK) proteins and seven signal transducer and activator of transcription (STAT) transcription factors mediate intracellular signal transduction downstream of cytokine receptors, which are implicated in the pathology of autoimmune, allergic and inflammatory diseases. Development of targeted small-molecule therapies such as JAK inhibitors, which have varied selective inhibitory profiles, has enabled a paradigm shift in the treatment of diverse disorders. JAK inhibitors suppress intracellular signalling mediated by multiple cytokines involved in the pathological processes of rheumatoid arthritis and many other immune and inflammatory diseases, and therefore have the capacity to target multiple aspects of those diseases. In addition to rheumatoid arthritis, JAK inhibition has potential for treatment of autoimmune diseases including systemic lupus erythematosus, spondyloarthritis, inflammatory bowel disease and alopecia areata, in which stimulation of innate immunity activates adaptive immunity, leading to generation of autoreactive T cells and activation and differentiation of B cells. JAK inhibitors are also effective in the treatment of allergic disorders, such as atopic dermatitis, and can even be used for the COVID-19-related cytokine storm. Mechanism-based treatments targeting JAK-STAT pathways have the potential to provide positive outcomes by minimizing the use of glucocorticoids and/or non-specific immunosuppressants in the treatment of systemic immune-mediated inflammatory diseases.


Subject(s)
COVID-19 , Rheumatology , Humans , Janus Kinases , SARS-CoV-2 , STAT Transcription Factors/metabolism
4.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580530

ABSTRACT

Over the last 25 years, inhibition of Janus kinases (JAKs) has been pursued as a modality for treating various immune and inflammatory disorders. While the clinical development of JAK inhibitors (jakinibs) began with the investigation of their use in allogeneic transplantation, their widest successful application came in autoimmune and allergic diseases. Multiple molecules have now been approved for diseases ranging from rheumatoid and juvenile arthritis to ulcerative colitis, atopic dermatitis, graft-versus-host-disease (GVHD) and other inflammatory pathologies in 80 countries around the world. Moreover, two jakinibs have also shown surprising efficacy in the treatment of hospitalized coronavirus disease-19 (COVID-19) patients, indicating additional roles for jakinibs in infectious diseases, cytokine storms and other hyperinflammatory syndromes. Jakinibs, as a class of pharmaceutics, continue to expand in clinical applications and with the development of more selective JAK-targeting and organ-selective delivery. Importantly, jakinib safety and pharmacokinetics have been investigated alongside clinical development, further cementing the potential benefits and limits of jakinib use. This review covers jakinibs that are approved or are under late phase investigation, focusing on clinical applications, pharmacokinetic and safety profiles, and future opportunities and challenges.

5.
Arthritis Rheumatol ; 73(12): 2166-2178, 2021 12.
Article in English | MEDLINE | ID: covidwho-1490704

ABSTRACT

The discovery of cytokines and their role in immune and inflammatory disease led to the development of a plethora of targeted biologic therapies. Later, efforts to understand mechanisms of cytokine signal transduction led to the discovery of JAKs, which themselves were quickly identified as therapeutic targets. It has been a decade since the first JAK inhibitors (jakinibs) were approved, and there are now 9 jakinibs approved for the treatment of rheumatic, dermatologic, hematologic, and gastrointestinal indications, along with emergency authorization for COVID-19. In this review, we will summarize relevant discoveries that led to first-generation jakinibs and review their efficacy and safety as demonstrated in pivotal clinical studies. We will discuss the next generation of more selective jakinibs, along with agents that target kinase families beyond JAKs. Finally, we will reflect on both the opportunities and challenges ahead as we enter the second decade of the clinical use of jakinibs.


Subject(s)
Janus Kinase Inhibitors/therapeutic use , Forecasting , Humans , Time Factors , Treatment Outcome , COVID-19 Drug Treatment
7.
Eur J Immunol ; 51(7): 1615-1627, 2021 07.
Article in English | MEDLINE | ID: covidwho-1209440

ABSTRACT

The European Journal of Immunology was launched 50 years ago, coinciding with the discovery of many cytokines and growth factors and the emergence of an entirely new field of research. Ultimately, our knowledge about the biological activity of these factors allowed us to better understand how the immune system functions in the context of inflammatory and autoimmune diseases leading to the development of targeted biologic therapies. The study of cytokine signal transduction led to the discovery of Janus kinases (JAK), and the consideration of therapeutically targeting JAKs to treat immune and inflammatory diseases. This year also marks the tenth anniversary of the approval of the first JAK inhibitor (jakinib) and now there are a total of nine approved jakinibs for treatment of rheumatologic, dermatologic, gastrointestinal, and neoplastic indications and most recently COVID-19. Here, we summarized the discoveries that led to development of first-generation jakinibs, discussed some of the newer, possibly more selective jakinibs, as well as jakinibs that also target other kinases. We also illustrated the rationale behind the application of these drugs in the treatment of COVID-19 cytokine storm. In this review, we will discuss the clinical success of jakinibs, the gaps in our understanding of their biological activities as well as challenges in regard to their clinical application.


Subject(s)
Autoimmune Diseases/drug therapy , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Hypersensitivity/drug therapy , Janus Kinase Inhibitors/therapeutic use , Cytokine Release Syndrome/pathology , Cytokines/biosynthesis , Cytokines/immunology , Humans , Janus Kinases/antagonists & inhibitors , SARS-CoV-2/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL